Other#

Distance Calculation#

Any point on the Earth’s surface can be located by its latitude and longitude coordinates. Latitude is the angle above or below the equator in degrees. The equator is zero degrees, the North pole is north 90 degrees latitude, and the South pole is South 90 degrees latitude. The continental United States falls between 25 and 50 degrees North.

Longitude is the angle East or West of the Greenwich meridian. The continental United States is between 70 and 125 degrees West.

Approximate Solutions#

One degree of latitude is equal to 69.1 miles. One degree of longitude is equal to 69.1 miles at the equator. North or South of the equator, 1 degree of longitude is a smaller distance. It’s reduced by the cosine of the latitude. Dividing the latitude number by 57.3 converts it to radians.

\[DistanceLat = 69.1\, (Lat_2 - Lat_1)\]
\[\begin{split}DistanceLong = 69.1\, (Long_2- Long_1)\, cos\, (\frac{Lat_1}{57.3})\\\end{split}\]
\[Distance = \sqrt{DistanceLat^2 + DistanceLong^2}\]

If you don’t want to use the COS function, then a good approximate solution is:

\[DistanceLat = 69.1\, (Lat_2 - Lat_1)\]
\[DistanceLong = 53\, (Long_2 - Long_1)\]
\[Distance = \sqrt{DistanceLat^2 + DistanceLong^2}\]

Exact Solution#

To calculate the exact distance between points requires spherical geometry.

The basic formula is:

\[D = 3959\, cos^{-1}\, (sin\, (Lat_1)\, sin(Lat_2)\, + cos\, (Lat_1)\, cos\, (Lat_2)\, cos\, (Long_2 - Long_1))\]

The above formula has one major problem: most computer languages do not support the arccosine function. Therefore a different form is necessary, one that uses the arctangent function that most languages embrace.

\[\begin{split}D = 3959\, tan^{-1}\, (\frac{\sqrt{1-A^2}}{A})\\\end{split}\]

where A is equal to:

\[A = sin\, (Lat_1)\, sin\, (Lat_2) + cos\, (Lat_1)\, cos\, (Lat_2)\, cos\, (Long_2-Long_1)\]

Most computer languages compute the sine and cosine function with the angle given in radians. To convert degrees to radians, divide degrees by the constant:

\[\begin{split}57.3\,({\frac{180}{\pi}\\})\end{split}\]

In BASIC this would be programmed as follows:

\[C = 57.3\]
\[\begin{split}A = sin\, ({\frac{Lat_1}{C})\\}\, sin\, ({\frac{Lat_2}{C})\\} + cos\, ({\frac{Lat_1}{C}\\})\, cos\, ({\frac{Lat_2}{C}\\})\, cos\, ({\frac{Long_2}{C}\\}-{\frac{Long_1}{C}\\})\end{split}\]
\[\begin{split}D = 3959\, tan^{-1}\, (\frac{\sqrt{1-A^2}}{A})\\\end{split}\]

Where:

D = distance in statue miles from the first to the second point.

C = degrees to radians constant 57.3.

Lat1 = latitude of the first point in degrees.

Long1 = longitude of the first point in degrees.

Lat2 = latitude of the second point in degrees.

Long2 = longitude of the second point in degrees.

NOTE: Dividing the latitude number by 57.3 converts it to radians.

Since all ZIP Code points in the United States are North latitude and West longitude, there is no need to check the sines (positive and negative) of the latitudes and longitudes.

Some programming languages, such as dBASE II/III, do not have the functions of the sine, cosine and arctangent. Also, the formulas given are time-consuming to calculate. A simpler but less accurate method is given here:

\[D = 69.1\, \sqrt{(Lat_2-Lat_1)^{2} + 0.6\, (Long_2 - Long_1)^{2}}\]

Although this formula is not as accurate as the first great circle method, it will give good results for most applications.

In basic, it is written as follows:

\[D = 69.1\, \sqrt{(Lat_2-Lat_1)^{2} + .6\, (Long_2 - Long_1)^{2}}\]

In dBASE III, it is written as follows:

\[D = 69.1\, \sqrt{(Lat_2-Lat_1)^{2} + 0.6\, (Long_2 - Long_1)^{2}}\]

To make using the database easier, the latitudes and longitudes are given in the decimal format instead of the degree, minute and second format. The latter would require the additional steps of converting seconds to fractions of a minute and then minutes to a fraction of a degree.

Bearing Formula#

The bearing is the direction from the first point to the second point. It is expressed as an angle from North in degrees. Due North is a bearing of zero degrees, East is a bearing of 90 degrees, South is 180, and west is 270.

The bearing from the first point to the second is calculated with:

\[B = tan^{-1}\, (\frac{sin(Lat_1)\, sin(Long_2 - Long_1)}{sin(Lat_2)\, cos(Lat_1) - cos(Lat_2)\, sin(Lat_1)\, cos(Long_2 - Long_1)})\]

Since the ARCTAN function gives the angle in radians, it is necessary to convert B to degrees by multiplying by

\[\begin{split}57.3\,({\frac{180}{\pi}\\})\end{split}\]

To use this equation requires some special considerations. This example assumes that Lat1, Lat2, Long1, Long2 have been converted to radians.

Use the following steps:

\[N = sin\, (Lat_1)\, sin\, (Long_1 - Long_2)\]
\[D = sin\, (Lat_2)\, cos\, (Lat_1)\, – \, cos\, (Lat_2)\, sin\, (Lat_1)\, cos\, (Long_1 - Long_2)\]
\[\begin{split}B = 57.3\, tan^{-1}\, ({\frac{N}{D}\\})\end{split}\]

If (D > 0) then (B = 360 + B)

If (D < 0) then (B = 180 + B)

If (B < 0) then (B = 360 + B)

Where:

N is the Numerator.

D is the Denominator.

B is the Bearing.

Examples#

The following examples should give you a feel for the numbers. For these examples, we will use the points of Schenectady, NY and Los Angeles, CA.

First Point is in Schenectady, NY, 12345

Lat1 = 42.8145

Long1 = 73.9380

Second Point is in Los Angeles, CA, 90001

Lat1 = 34.0515

Long1 = 118.2420

Example 1: Approximate Formula

\[DistanceLat = 69.1\, (Lat_2 - Lat_1) = 605.5\]
\[DistanceLong = 69.1\, (Long_2- Long_1)\, cos\, (\frac{42.8145}{57.3}) \ = 2245.8\]
\[Distance = 2326.0 \ miles\]

Example 2: Approximate Formula

\[DistanceLat = 69.1\, (Lat_2 - Lat_1) = 605.5\]
\[DistanceLong = 53\, (Long_2 - Long_1) = \ 2348.1\]
\[Distance = 2424.9 \ miles\]

Example 3: Exact Solution Formula

\[\begin{split}A_1 = sin\, ({\frac{Lat_1}{57.3})\\}\, sin\, ({\frac{Lat_2}{57.3})\\} = \ 0.3805\end{split}\]
\[\begin{split}A_2 = cos\, ({\frac{Lat_1}{57.3}\\})\, cos\, ({\frac{Lat_2}{57.3}\\})\, cos\, ({\frac{Long_2}{57.3}\\}-{\frac{Long_1}{57.3}\\}) = \ 0.4350\end{split}\]
\[A =\ A_1 + A_2 = \ 0.8155\]
\[\begin{split}D = 3959\, tan^{-1}\, (\frac{\sqrt{1-A^2}}{A})\\\end{split}\]
\[D = 3959\, tan^{-1}\, (\frac{\sqrt{1-(0.8155)^2}}{0.8155}) \ = 2443.4\]

Example 4: Bearing Formula

\[\begin{split}N = sin\, ({\frac{Lat_1}{57.3})\\}\, sin\, ({\frac{Long_2}{57.3}\\}-{\frac{Long_1}{57.3}\\}) = \ 0.4747\end{split}\]
\[\begin{split}D_1 = sin\, ({\frac{Lat_2}{57.3})\\}\, cos\, ({\frac{Lat_1}{57.3})\\} = \ 0.4107\end{split}\]
\[\begin{split}D_2 = cos\, ({\frac{Lat_2}{57.3})\\}\, sin\, ({\frac{Lat_1}{57.3})\\}\, cos\, ({\frac{Long_2}{57.3}\\}-{\frac{Long_1}{57.3}\\}) = \ 0.4029\end{split}\]
\[\begin{split}B = 57.3\, tan^{-1}\, ({\frac{N}{D_1 - D_2}\\}) = \ -81.9 \,Degrees\end{split}\]
\[Bearing = 360 + B = 360 - 89.1\]
\[Bearing = 270.9\, degrees\, from\, North\]

LATAs#

United States LATAs#

Code

State

Code

State

120

Maine

222

Delaware Valley, NJ

122

New Hampshire

224

North Jersey, NJ

124

Vermont

226

Capital, PA

126

Western Mass

228

Philadelphia, PA

128

Eastern Mass

230

Altoona, PA

130

Rhode Island

232

Northeast, PA

132

New York, NY

234

Pittsburgh, PA

133

Poughkeepsie, NY

236

Washington DC

134

Albany, NY

238

Baltimore, MD

136

Syracuse, NY

240

Hagerstown, MD

138

Binghamton, NY

242

Salisbury, MD

140

Buffalo, NY

244

Roanoke, VA

220

Atlantic Coastal, NJ

246

Culpeper, VA

248

Richmond, VA

428

Wilmington, NC

250

Lynchburg, VA

430

Greenville, SC

252

Norfolk, VA

432

Florence, SC

254

Charleston, WV

434

Columbia, SC

256

Clarksburg, WV

436

Charleston, SC

320

Cleveland, OH

438

Atlanta, GA

322

Youngstown, OH

440

Savannah, GA

324

Columbus, OH

442

Augusta, GA

325

Akron, OH

444

Albany, GA

326

Toledo, OH

446

Macon, GA

328

Dayton, OH

448

Pensacola, FL

330

Evansville, IN

450

Panama City, FL

332

South Bend, IN

452

Jacksonville, FL

334

Auburn/Huntington, IN

454

Gainesville, FL

336

Indianapolis, IN

456

Daytona Beach, FL

338

Bloomington, IN

458

Orlando, FL

340

Detroit, MI

460

Southeast FL

342

Upper Peninsula MI

462

Louisville, KY

344

Saginaw, MI

464

Owensboro, KY

346

Lansing, MI

466

Winchester, KY

348

Grand Rapids, MI

468

Memphis, TN

350

Northeast WI

470

Nashville, TN

352

Northwest WI

472

Chattanooga, TN

354

Southwest WI

474

Knoxville, TN

356

Southeast WI

476

Birmingham, AL

358

Chicago, IL

477

Huntsville, AL

360

Rockford, IL

478

Montgomery, AL

362

Cairo, IL

480

Mobile, AL

364

Sterling, IL

482

Jackson, MS

366

Forrest, IL

484

Biloxi, MS

368

Peoria, IL

486

Shreveport, LA

370

Champaign, IL

488

Lafayette, LA

374

Springfield, IL

490

New Orleans, LA

376

Quincy, IL

492

Baton Rouge, LA

420

Asheville, NC

520

St Louis, MO

422

Charlotte, NC

521

Westphalia, MO

424

Greensboro, NC

522

Springfield, MO

426

Raleigh, NC

524

Kansas City, MO

526

Fort Smith, AK

652

Idaho

528

Little Rock, AK

654

Wyoming

530

Pine Bluff, AK

656

Denver, CO

532

Wichita, KS

658

Colorado Springs, CO

534

Topeka, KS

660

Utah

536

Oklahoma City, OK

664

New Mexico

538

Tulsa, OK

666

Phoenix, AZ

540

El Paso, TX

668

Tucson, AZ

542

Midland, TX

670

Eugene, OR

544

Lubbock, TX

672

Portland, OR

546

Amarillo, TX

674

Seattle, WA

548

Wichita Falls, TX

676

Spokane, WA

550

Abilene, TX

720

Reno, NV

552

Dallas, TX

721

Pahrump, NV

554

Longview, TX

722

San Francisco, CA

556

Waco, TX

724

Chico, CA

558

Austin, TX

726

Sacramento, CA

560

Houston, TX

728

Fresno, CA

562

Beaumont, TX

730

Los Angeles, CA

564

Corpus Christi, TX

732

San Diego, CA

566

San Antonio, TX

734

Bakersfield, CA

568

Brownsville, TX

736

Monterey, CA

570

Hearne, TX

738

Stockton, CA

620

Rochester, MN

740

San Luis Obispo, CA

624

Duluth, MN

832

Alaska

626

St Cloud, MN

834

Hawaii

628

Minneapolis, MN

920

Connecticut

630

Sioux City, IA

921

Fishers Island, NY

632

Des Moines, IA

922

Cincinnati, OH

634

Davenport, IA

923

Lima/Mansfield, OH

635

Cedar Rapids, IA

924

Erie, PA

636

Brainerd/Fargo, ND

927

Harrisonburg, VA

638

Bismark, ND

928

Charlottesville, VA

640

South Dakota

929

Eninburg, VA

644

Omaha, NE

932

Blue Field, WV

646

Grand Island, NE

937

Richmond, IN

648

Great Falls, MT

938

Terre Haute, IN

650

Billings, MT

939

Fort Myers, FL

949

Fayetteville, NC

963

Kalispell, MT

951

Rocky Mount,

973

Palm Springs, CA

952

Tampa, FL

974

Rochester, NY

953

Tallahassee, FL

976

Mattoon, IL

956

Bristol/Johnson, TN

977

Macomb, IL

958

Lincoln, NE

978

Olney, IL

960

Couer D’Alene, ID

980

Navajo Territory, AZ

961

San Angelo, TX

981

Navajo Territory, UT

Canadian LATAs#

Code

State

850

Quebec

851

Ontario

881

Alberta

883

Quebec

884

Alberta

885

Newfoundland

886

British Columbia

887

Nova Scotia/Prince Edward

888

Manitoba

889

Nova Scotia/Prince Edward

890

New Brunswick

891

Saskatchewan

892

Yukon

Caribbean LATAs#

Code

State

820

Puerto Rico

822

Virgin Islands

824

Bahamas

826

Jamaica

828

Dominican Republic

830

Other Caribbean Islands

Additional LATAs#

Code

State

838

Mexico

870

Mariana Islands

871

Guam

State Abbreviations and Codes#

Abbreviation

Code

State

AL

01

Alabama

AK

02

Alaska

AZ

04

Arizona

AR

05

Arkansas

CA

06

California

CO

08

Colorado

CT

09

Connecticut

DE

10

Delaware

DC

11

District of Columbia

FL

12

Florida

GA

13

Georgia

HI

15

Hawaii

ID

16

Idaho

IL

17

Illinois

IN

18

Indiana

IA

19

Iowa

KS

20

Kansas

KY

21

Kentucky

LA

22

Louisiana

ME

23

Maine

MD

24

Maryland

MA

25

Massachusetts

MI

26

Michigan

MN

27

Minnesota

MS

28

Mississippi

MO

29

Missouri

MT

30

Montana

NE

31

Nebraska

NV

32

Nevada

NH

33

New Hampshire

NJ

34

New Jersey

NM

35

New Mexico

NY

36

New York

NC

37

North Carolina

ND

38

North Dakota

OH

39

Ohio

OK

40

Oklahoma

OR

41

Oregon

PA

42

Pennsylvania

RI

44

Rhode Island

SC

45

South Carolina

SD

46

South Dakota

TN

47

Tennessee

TX

48

Texas

UT

49

Utah

VT

50

Vermont

VA

51

Virginia

WA

53

Washington

WV

54

West Virginia

WI

55

Wisconsin

WY

56

Wyoming

AS

60

American Samoa

FM

64

Micronesia

GU

66

Guam

MH

68

Marshall Islands

MP

69

N.Mariana Islands

PW

70

Palau

PR

72

Puerto Rico

UM

74

Minor Islands

VI

78

Virgin Islands

Canadian Abbreviations and Provinces#

Abbreviation

Province

BC

British Columbia

NB

New Brunswick

NL

Newfoundland

NS

Nova Scotia

NT

Northwest Territories

NU

Nunavut

PE

Prince Edward Island

AB

Province of Alberta

MB

Province of Manitoba

ON

Province of Ontario

QC

Province of Quebec

SK

Province of Saskatchewan

YT

Yukon Territories

Release Schedule#

Release Date Schedule

2025-01-27

2025-04-21

2025-07-21

2025-10-27

2026-01-26